632 lines
18 KiB
Markdown
632 lines
18 KiB
Markdown
# AUTOMATED TESTING ENHANCEMENTS FOR CREMOTE ADA SUITE
|
|
|
|
**Date:** October 2, 2025
|
|
**Purpose:** Propose creative solutions to automate currently manual accessibility tests
|
|
**Philosophy:** KISS - Keep it Simple, Stupid. Practical solutions using existing tools.
|
|
|
|
---
|
|
|
|
## EXECUTIVE SUMMARY
|
|
|
|
Currently, our cremote MCP suite automates ~70% of WCAG 2.1 AA testing. This document proposes practical solutions to increase automation coverage to **~85-90%** by leveraging:
|
|
|
|
1. **ImageMagick** for gradient contrast analysis
|
|
2. **Screenshot-based analysis** for visual testing
|
|
3. **OCR tools** for text-in-images detection
|
|
4. **Video frame analysis** for animation/flash testing
|
|
5. **Enhanced JavaScript injection** for deeper DOM analysis
|
|
|
|
---
|
|
|
|
## CATEGORY 1: GRADIENT & COMPLEX BACKGROUND CONTRAST
|
|
|
|
### Current Limitation
|
|
**Problem:** Axe-core reports "incomplete" for text on gradient backgrounds because it cannot calculate contrast ratios for non-solid colors.
|
|
|
|
**Example from our assessment:**
|
|
- Navigation menu links (background color could not be determined due to overlap)
|
|
- Gradient backgrounds on hero section (contrast cannot be automatically calculated)
|
|
|
|
### Proposed Solution: ImageMagick Gradient Analysis
|
|
|
|
**Approach:**
|
|
1. Take screenshot of specific element using `web_screenshot_element_cremotemcp_cremotemcp`
|
|
2. Use ImageMagick to analyze color distribution
|
|
3. Calculate contrast ratio against darkest/lightest points in gradient
|
|
4. Report worst-case contrast ratio
|
|
|
|
**Implementation:**
|
|
|
|
```bash
|
|
# Step 1: Take element screenshot
|
|
web_screenshot_element_cremotemcp(selector=".hero-section", output="/tmp/hero.png")
|
|
|
|
# Step 2: Extract text color from computed styles
|
|
text_color=$(console_command "getComputedStyle(document.querySelector('.hero-section h1')).color")
|
|
|
|
# Step 3: Find darkest and lightest colors in background
|
|
convert /tmp/hero.png -format "%[fx:minima]" info: > darkest.txt
|
|
convert /tmp/hero.png -format "%[fx:maxima]" info: > lightest.txt
|
|
|
|
# Step 4: Calculate contrast ratios
|
|
# Compare text color against both extremes
|
|
# Report the worst-case scenario
|
|
|
|
# Step 5: Sample multiple points across gradient
|
|
convert /tmp/hero.png -resize 10x10! -depth 8 txt:- | grep -v "#" | awk '{print $3}'
|
|
# This gives us 100 sample points across the gradient
|
|
```
|
|
|
|
**Tools Required:**
|
|
- ImageMagick (already available in most containers)
|
|
- Basic shell scripting
|
|
- Color contrast calculation library (can use existing cremote contrast checker)
|
|
|
|
**Accuracy:** ~95% - Will catch most gradient contrast issues
|
|
|
|
**Implementation Effort:** 8-16 hours
|
|
|
|
---
|
|
|
|
## CATEGORY 2: TEXT IN IMAGES DETECTION
|
|
|
|
### Current Limitation
|
|
**Problem:** WCAG 1.4.5 requires text to be actual text, not images of text (except logos). Currently requires manual visual inspection.
|
|
|
|
### Proposed Solution: OCR-Based Text Detection
|
|
|
|
**Approach:**
|
|
1. Screenshot all images on page
|
|
2. Run OCR (Tesseract) on each image
|
|
3. If text detected, flag for manual review
|
|
4. Cross-reference with alt text to verify equivalence
|
|
|
|
**Implementation:**
|
|
|
|
```bash
|
|
# Step 1: Extract all image URLs
|
|
images=$(console_command "Array.from(document.querySelectorAll('img')).map(img => ({src: img.src, alt: img.alt}))")
|
|
|
|
# Step 2: Download each image
|
|
for img in $images; do
|
|
curl -o /tmp/img_$i.png $img
|
|
|
|
# Step 3: Run OCR
|
|
tesseract /tmp/img_$i.png /tmp/img_$i_text
|
|
|
|
# Step 4: Check if significant text detected
|
|
word_count=$(wc -w < /tmp/img_$i_text.txt)
|
|
|
|
if [ $word_count -gt 5 ]; then
|
|
echo "WARNING: Image contains text: $img"
|
|
echo "Detected text: $(cat /tmp/img_$i_text.txt)"
|
|
echo "Alt text: $alt"
|
|
echo "MANUAL REVIEW REQUIRED: Verify if this should be HTML text instead"
|
|
fi
|
|
done
|
|
```
|
|
|
|
**Tools Required:**
|
|
- Tesseract OCR (open source, widely available)
|
|
- curl or wget for image download
|
|
- Basic shell scripting
|
|
|
|
**Accuracy:** ~80% - Will catch obvious text-in-images, may miss stylized text
|
|
|
|
**False Positives:** Logos, decorative text (acceptable - requires manual review anyway)
|
|
|
|
**Implementation Effort:** 8-12 hours
|
|
|
|
---
|
|
|
|
## CATEGORY 3: ANIMATION & FLASH DETECTION
|
|
|
|
### Current Limitation
|
|
**Problem:** WCAG 2.3.1 requires no content flashing more than 3 times per second. Currently requires manual observation.
|
|
|
|
### Proposed Solution: Video Frame Analysis
|
|
|
|
**Approach:**
|
|
1. Record video of page for 10 seconds using Chrome DevTools Protocol
|
|
2. Extract frames using ffmpeg
|
|
3. Compare consecutive frames for brightness changes
|
|
4. Count flashes per second
|
|
5. Flag if >3 flashes/second detected
|
|
|
|
**Implementation:**
|
|
|
|
```bash
|
|
# Step 1: Start video recording via CDP
|
|
# (Chrome DevTools Protocol supports screencast)
|
|
console_command "
|
|
chrome.send('Page.startScreencast', {
|
|
format: 'png',
|
|
quality: 80,
|
|
maxWidth: 1280,
|
|
maxHeight: 800
|
|
});
|
|
"
|
|
|
|
# Step 2: Record for 10 seconds, save frames
|
|
|
|
# Step 3: Analyze frames with ffmpeg
|
|
ffmpeg -i /tmp/recording.mp4 -vf "select='gt(scene,0.3)',showinfo" -f null - 2>&1 | \
|
|
grep "Parsed_showinfo" | wc -l
|
|
|
|
# Step 4: Calculate flashes per second
|
|
# If scene changes > 30 in 10 seconds = 3+ per second = FAIL
|
|
|
|
# Step 5: For brightness-based flashing
|
|
ffmpeg -i /tmp/recording.mp4 -vf "signalstats" -f null - 2>&1 | \
|
|
grep "lavfi.signalstats.YAVG" | \
|
|
awk '{print $NF}' > brightness.txt
|
|
|
|
# Analyze brightness.txt for rapid changes
|
|
```
|
|
|
|
**Tools Required:**
|
|
- ffmpeg (video processing)
|
|
- Chrome DevTools Protocol screencast API
|
|
- Python/shell script for analysis
|
|
|
|
**Accuracy:** ~90% - Will catch most flashing content
|
|
|
|
**Implementation Effort:** 16-24 hours (more complex)
|
|
|
|
---
|
|
|
|
## CATEGORY 4: HOVER/FOCUS CONTENT PERSISTENCE
|
|
|
|
### Current Limitation
|
|
**Problem:** WCAG 1.4.13 requires hover/focus-triggered content to be dismissible, hoverable, and persistent. Currently requires manual testing.
|
|
|
|
### Proposed Solution: Automated Interaction Testing
|
|
|
|
**Approach:**
|
|
1. Identify all elements with hover/focus event listeners
|
|
2. Programmatically trigger hover/focus
|
|
3. Measure how long content stays visible
|
|
4. Test if Esc key dismisses content
|
|
5. Test if mouse can move to triggered content
|
|
|
|
**Implementation:**
|
|
|
|
```javascript
|
|
// Step 1: Find all elements with hover/focus handlers
|
|
const elementsWithHover = Array.from(document.querySelectorAll('*')).filter(el => {
|
|
const style = getComputedStyle(el, ':hover');
|
|
return style.display !== getComputedStyle(el).display ||
|
|
style.visibility !== getComputedStyle(el).visibility;
|
|
});
|
|
|
|
// Step 2: Test each element
|
|
for (const el of elementsWithHover) {
|
|
// Trigger hover
|
|
el.dispatchEvent(new MouseEvent('mouseover', {bubbles: true}));
|
|
|
|
// Wait 100ms
|
|
await new Promise(r => setTimeout(r, 100));
|
|
|
|
// Check if new content appeared
|
|
const newContent = document.querySelector('[role="tooltip"], .tooltip, .popover');
|
|
|
|
if (newContent) {
|
|
// Test 1: Can we hover over the new content?
|
|
const rect = newContent.getBoundingClientRect();
|
|
const canHover = rect.width > 0 && rect.height > 0;
|
|
|
|
// Test 2: Does Esc dismiss it?
|
|
document.dispatchEvent(new KeyboardEvent('keydown', {key: 'Escape'}));
|
|
await new Promise(r => setTimeout(r, 100));
|
|
const dismissed = !document.contains(newContent);
|
|
|
|
// Test 3: Does it persist when we move mouse away briefly?
|
|
el.dispatchEvent(new MouseEvent('mouseout', {bubbles: true}));
|
|
await new Promise(r => setTimeout(r, 500));
|
|
const persistent = document.contains(newContent);
|
|
|
|
console.log({
|
|
element: el,
|
|
canHover,
|
|
dismissible: dismissed,
|
|
persistent
|
|
});
|
|
}
|
|
}
|
|
```
|
|
|
|
**Tools Required:**
|
|
- JavaScript injection via cremote
|
|
- Chrome DevTools Protocol for event simulation
|
|
- Timing and state tracking
|
|
|
|
**Accuracy:** ~85% - Will catch most hover/focus issues
|
|
|
|
**Implementation Effort:** 12-16 hours
|
|
|
|
---
|
|
|
|
## CATEGORY 5: SEMANTIC MEANING & COGNITIVE LOAD
|
|
|
|
### Current Limitation
|
|
**Problem:** Some WCAG criteria require human judgment (e.g., "headings describe topic or purpose", "instructions don't rely solely on sensory characteristics").
|
|
|
|
### Proposed Solution: LLM-Assisted Analysis
|
|
|
|
**Approach:**
|
|
1. Extract all headings, labels, and instructions
|
|
2. Use LLM (Claude, GPT-4) to analyze semantic meaning
|
|
3. Check for sensory-only instructions (e.g., "click the red button")
|
|
4. Verify heading descriptiveness
|
|
5. Flag potential issues for manual review
|
|
|
|
**Implementation:**
|
|
|
|
```javascript
|
|
// Step 1: Extract content for analysis
|
|
const analysisData = {
|
|
headings: Array.from(document.querySelectorAll('h1,h2,h3,h4,h5,h6')).map(h => ({
|
|
level: h.tagName,
|
|
text: h.textContent.trim(),
|
|
context: h.parentElement.textContent.substring(0, 200)
|
|
})),
|
|
|
|
instructions: Array.from(document.querySelectorAll('label, .instructions, [role="note"]')).map(el => ({
|
|
text: el.textContent.trim(),
|
|
context: el.parentElement.textContent.substring(0, 200)
|
|
})),
|
|
|
|
links: Array.from(document.querySelectorAll('a')).map(a => ({
|
|
text: a.textContent.trim(),
|
|
href: a.href,
|
|
context: a.parentElement.textContent.substring(0, 100)
|
|
}))
|
|
};
|
|
|
|
// Step 2: Send to LLM for analysis
|
|
const prompt = `
|
|
Analyze this web content for accessibility issues:
|
|
|
|
1. Do any instructions rely solely on sensory characteristics (color, shape, position, sound)?
|
|
Examples: "click the red button", "the square icon", "button on the right"
|
|
|
|
2. Are headings descriptive of their section content?
|
|
Flag generic headings like "More Information", "Click Here", "Welcome"
|
|
|
|
3. Are link texts descriptive of their destination?
|
|
Flag generic links like "click here", "read more", "learn more"
|
|
|
|
Content to analyze:
|
|
${JSON.stringify(analysisData, null, 2)}
|
|
|
|
Return JSON with:
|
|
{
|
|
"sensory_instructions": [{element, issue, suggestion}],
|
|
"generic_headings": [{heading, issue, suggestion}],
|
|
"unclear_links": [{link, issue, suggestion}]
|
|
}
|
|
`;
|
|
|
|
// Step 3: Parse LLM response and generate report
|
|
```
|
|
|
|
**Tools Required:**
|
|
- LLM API access (Claude, GPT-4, or local model)
|
|
- JSON parsing
|
|
- Integration with cremote reporting
|
|
|
|
**Accuracy:** ~75% - LLM can catch obvious issues, but still requires human review
|
|
|
|
**Implementation Effort:** 16-24 hours
|
|
|
|
---
|
|
|
|
## CATEGORY 6: TIME-BASED MEDIA (VIDEO/AUDIO)
|
|
|
|
### Current Limitation
|
|
**Problem:** WCAG 1.2.x criteria require captions, audio descriptions, and transcripts. Currently requires manual review of media content.
|
|
|
|
### Proposed Solution: Automated Media Inventory & Validation
|
|
|
|
**Approach:**
|
|
1. Detect all video/audio elements
|
|
2. Check for caption tracks
|
|
3. Verify caption files are accessible
|
|
4. Use speech-to-text to verify caption accuracy (optional)
|
|
5. Check for audio description tracks
|
|
|
|
**Implementation:**
|
|
|
|
```javascript
|
|
// Step 1: Find all media elements
|
|
const mediaElements = {
|
|
videos: Array.from(document.querySelectorAll('video')).map(v => ({
|
|
src: v.src,
|
|
tracks: Array.from(v.querySelectorAll('track')).map(t => ({
|
|
kind: t.kind,
|
|
src: t.src,
|
|
srclang: t.srclang,
|
|
label: t.label
|
|
})),
|
|
controls: v.hasAttribute('controls'),
|
|
autoplay: v.hasAttribute('autoplay'),
|
|
duration: v.duration
|
|
})),
|
|
|
|
audios: Array.from(document.querySelectorAll('audio')).map(a => ({
|
|
src: a.src,
|
|
controls: a.hasAttribute('controls'),
|
|
autoplay: a.hasAttribute('autoplay'),
|
|
duration: a.duration
|
|
}))
|
|
};
|
|
|
|
// Step 2: Validate each video
|
|
for (const video of mediaElements.videos) {
|
|
const issues = [];
|
|
|
|
// Check for captions
|
|
const captionTrack = video.tracks.find(t => t.kind === 'captions' || t.kind === 'subtitles');
|
|
if (!captionTrack) {
|
|
issues.push('FAIL: No caption track found (WCAG 1.2.2)');
|
|
} else {
|
|
// Verify caption file is accessible
|
|
const response = await fetch(captionTrack.src);
|
|
if (!response.ok) {
|
|
issues.push(`FAIL: Caption file not accessible: ${captionTrack.src}`);
|
|
}
|
|
}
|
|
|
|
// Check for audio description
|
|
const descriptionTrack = video.tracks.find(t => t.kind === 'descriptions');
|
|
if (!descriptionTrack) {
|
|
issues.push('WARNING: No audio description track found (WCAG 1.2.5)');
|
|
}
|
|
|
|
// Check for transcript link
|
|
const transcriptLink = document.querySelector(`a[href*="transcript"]`);
|
|
if (!transcriptLink) {
|
|
issues.push('WARNING: No transcript link found (WCAG 1.2.3)');
|
|
}
|
|
|
|
console.log({video: video.src, issues});
|
|
}
|
|
```
|
|
|
|
**Enhanced with Speech-to-Text (Optional):**
|
|
|
|
```bash
|
|
# Download video
|
|
youtube-dl -o /tmp/video.mp4 $video_url
|
|
|
|
# Extract audio
|
|
ffmpeg -i /tmp/video.mp4 -vn -acodec pcm_s16le -ar 16000 /tmp/audio.wav
|
|
|
|
# Run speech-to-text (using Whisper or similar)
|
|
whisper /tmp/audio.wav --model base --output_format txt
|
|
|
|
# Compare with caption file
|
|
diff /tmp/audio.txt /tmp/captions.vtt
|
|
|
|
# Calculate accuracy percentage
|
|
```
|
|
|
|
**Tools Required:**
|
|
- JavaScript for media detection
|
|
- fetch API for caption file validation
|
|
- Optional: Whisper (OpenAI) or similar for speech-to-text
|
|
- ffmpeg for audio extraction
|
|
|
|
**Accuracy:**
|
|
- Media detection: ~100%
|
|
- Caption presence: ~100%
|
|
- Caption accuracy (with STT): ~70-80%
|
|
|
|
**Implementation Effort:**
|
|
- Basic validation: 8-12 hours
|
|
- With speech-to-text: 24-32 hours
|
|
|
|
---
|
|
|
|
## CATEGORY 7: MULTI-PAGE CONSISTENCY
|
|
|
|
### Current Limitation
|
|
**Problem:** WCAG 3.2.3 (Consistent Navigation) and 3.2.4 (Consistent Identification) require checking consistency across multiple pages. Currently requires manual comparison.
|
|
|
|
### Proposed Solution: Automated Cross-Page Analysis
|
|
|
|
**Approach:**
|
|
1. Crawl all pages on site
|
|
2. Extract navigation structure from each page
|
|
3. Compare navigation order across pages
|
|
4. Extract common elements (search, login, cart, etc.)
|
|
5. Verify consistent labeling and identification
|
|
|
|
**Implementation:**
|
|
|
|
```javascript
|
|
// Step 1: Crawl site and extract navigation
|
|
const siteMap = [];
|
|
|
|
async function crawlPage(url, visited = new Set()) {
|
|
if (visited.has(url)) return;
|
|
visited.add(url);
|
|
|
|
await navigateTo(url);
|
|
|
|
const pageData = {
|
|
url,
|
|
navigation: Array.from(document.querySelectorAll('nav a, header a')).map(a => ({
|
|
text: a.textContent.trim(),
|
|
href: a.href,
|
|
order: Array.from(a.parentElement.children).indexOf(a)
|
|
})),
|
|
commonElements: {
|
|
search: document.querySelector('[type="search"], [role="search"]')?.outerHTML,
|
|
login: document.querySelector('a[href*="login"], button:contains("Login")')?.outerHTML,
|
|
cart: document.querySelector('a[href*="cart"], .cart')?.outerHTML
|
|
}
|
|
};
|
|
|
|
siteMap.push(pageData);
|
|
|
|
// Find more pages to crawl
|
|
const links = Array.from(document.querySelectorAll('a[href]'))
|
|
.map(a => a.href)
|
|
.filter(href => href.startsWith(window.location.origin));
|
|
|
|
for (const link of links.slice(0, 50)) { // Limit crawl depth
|
|
await crawlPage(link, visited);
|
|
}
|
|
}
|
|
|
|
// Step 2: Analyze consistency
|
|
function analyzeConsistency(siteMap) {
|
|
const issues = [];
|
|
|
|
// Check navigation order consistency
|
|
const navOrders = siteMap.map(page =>
|
|
page.navigation.map(n => n.text).join('|')
|
|
);
|
|
|
|
const uniqueOrders = [...new Set(navOrders)];
|
|
if (uniqueOrders.length > 1) {
|
|
issues.push({
|
|
criterion: 'WCAG 3.2.3 Consistent Navigation',
|
|
severity: 'FAIL',
|
|
description: 'Navigation order varies across pages',
|
|
pages: siteMap.filter((p, i) => navOrders[i] !== navOrders[0]).map(p => p.url)
|
|
});
|
|
}
|
|
|
|
// Check common element consistency
|
|
const searchElements = siteMap.map(p => p.commonElements.search).filter(Boolean);
|
|
if (new Set(searchElements).size > 1) {
|
|
issues.push({
|
|
criterion: 'WCAG 3.2.4 Consistent Identification',
|
|
severity: 'FAIL',
|
|
description: 'Search functionality identified inconsistently across pages'
|
|
});
|
|
}
|
|
|
|
return issues;
|
|
}
|
|
```
|
|
|
|
**Tools Required:**
|
|
- Web crawler (can use existing cremote navigation)
|
|
- DOM extraction and comparison
|
|
- Pattern matching algorithms
|
|
|
|
**Accuracy:** ~90% - Will catch most consistency issues
|
|
|
|
**Implementation Effort:** 16-24 hours
|
|
|
|
---
|
|
|
|
## IMPLEMENTATION PRIORITY
|
|
|
|
### Phase 1: High Impact, Low Effort (Weeks 1-2)
|
|
1. **Gradient Contrast Analysis** (ImageMagick) - 8-16 hours
|
|
2. **Hover/Focus Content Testing** (JavaScript) - 12-16 hours
|
|
3. **Media Inventory & Validation** (Basic) - 8-12 hours
|
|
|
|
**Total Phase 1:** 28-44 hours
|
|
|
|
### Phase 2: Medium Impact, Medium Effort (Weeks 3-4)
|
|
4. **Text-in-Images Detection** (OCR) - 8-12 hours
|
|
5. **Cross-Page Consistency** (Crawler) - 16-24 hours
|
|
6. **LLM-Assisted Semantic Analysis** - 16-24 hours
|
|
|
|
**Total Phase 2:** 40-60 hours
|
|
|
|
### Phase 3: Lower Priority, Higher Effort (Weeks 5-6)
|
|
7. **Animation/Flash Detection** (Video analysis) - 16-24 hours
|
|
8. **Speech-to-Text Caption Validation** - 24-32 hours
|
|
|
|
**Total Phase 3:** 40-56 hours
|
|
|
|
**Grand Total:** 108-160 hours (13-20 business days)
|
|
|
|
---
|
|
|
|
## EXPECTED OUTCOMES
|
|
|
|
### Current State:
|
|
- **Automated Coverage:** ~70% of WCAG 2.1 AA criteria
|
|
- **Manual Review Required:** ~30%
|
|
|
|
### After Phase 1:
|
|
- **Automated Coverage:** ~78%
|
|
- **Manual Review Required:** ~22%
|
|
|
|
### After Phase 2:
|
|
- **Automated Coverage:** ~85%
|
|
- **Manual Review Required:** ~15%
|
|
|
|
### After Phase 3:
|
|
- **Automated Coverage:** ~90%
|
|
- **Manual Review Required:** ~10%
|
|
|
|
### Remaining Manual Tests (~10%):
|
|
- Cognitive load assessment
|
|
- Content quality and readability
|
|
- User experience with assistive technologies
|
|
- Real-world usability testing
|
|
- Complex user interactions requiring human judgment
|
|
|
|
---
|
|
|
|
## TECHNICAL REQUIREMENTS
|
|
|
|
### Software Dependencies:
|
|
- **ImageMagick** - Image analysis (usually pre-installed)
|
|
- **Tesseract OCR** - Text detection in images
|
|
- **ffmpeg** - Video/audio processing
|
|
- **Whisper** (optional) - Speech-to-text for caption validation
|
|
- **LLM API** (optional) - Semantic analysis
|
|
|
|
### Installation:
|
|
```bash
|
|
# Ubuntu/Debian
|
|
apt-get install imagemagick tesseract-ocr ffmpeg
|
|
|
|
# For Whisper (Python)
|
|
pip install openai-whisper
|
|
|
|
# For LLM integration
|
|
# Use existing API keys for Claude/GPT-4
|
|
```
|
|
|
|
### Container Considerations:
|
|
- All tools should be installed in cremote container
|
|
- File paths must account for container filesystem
|
|
- Use file_download_cremotemcp for retrieving analysis results
|
|
|
|
---
|
|
|
|
## CONCLUSION
|
|
|
|
By implementing these creative automated solutions, we can increase our accessibility testing coverage from **70% to 90%**, significantly reducing manual review burden while maintaining high accuracy.
|
|
|
|
**Key Principles:**
|
|
- ✅ Use existing, proven tools (ImageMagick, Tesseract, ffmpeg)
|
|
- ✅ Keep solutions simple and maintainable (KISS philosophy)
|
|
- ✅ Prioritize high-impact, low-effort improvements first
|
|
- ✅ Accept that some tests will always require human judgment
|
|
- ✅ Focus on catching obvious violations automatically
|
|
|
|
**Next Steps:**
|
|
1. Review and approve proposed solutions
|
|
2. Prioritize implementation based on business needs
|
|
3. Start with Phase 1 (high impact, low effort)
|
|
4. Iterate and refine based on real-world testing
|
|
5. Document all new automated tests in enhanced_chromium_ada_checklist.md
|
|
|
|
---
|
|
|
|
**Document Prepared By:** Cremote Development Team
|
|
**Date:** October 2, 2025
|
|
**Status:** PROPOSAL - Awaiting Approval
|
|
|